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Materials and Methods 
To get a rough estimate of the number of consumer-resource models in the literature, 

we searched the Web of Science for the topic search string: mathematical population 
model Not Bayesian NOT "general linear" NOT "model system" NOT "mixed model" 
NOT "generalized linear" with the addition of either “parasitoid”, “host parasite” or 
“predator prey”. We counted the results for each search, then selected 100 papers at 
random and estimated the proportion that were actually on consumer-resource population 
models. Our efforts could have missed studies that did not have the full complement of 
search terms. Regardless of the details of our search, there have been thousands of 
research papers about consumer-resource models. 

We limit our modeling to one consumer population and one resource population, a 
common practice for most consumer-resource models. Most of our examples describe 
tracking states in the currency of individuals (or their density), but this can be converted 
to biomass density (e.g., using the approaches of Yodsiz and Innes (10)). Although many 
consumer-resource interactions happen in discrete time, we describe the general model in 
continuous time for convenience. Finally, to keep the theory general, we do not define a 
function’s specific form (5).  

When developing the general model, our first consideration was the range of state 
variables used in past consumer-resource models. Most predator-prey models track a 
free-living prey and a free-living predator. A few predator-prey models split the prey into 
vulnerable and invulnerable classes. Microparasite models often consider three host 
states: susceptible, infected, and resistant (some also include exposed). Macroparasite 
models track the parasite population separate from the host population and often include 
a free-living infective state. A highly inclusive starting point for considering potential 
state variables for a resource, X, is the classic susceptible, exposed, infected, 
recovered/resistant (SEIR) model for host-pathogen dynamics (2). To generalize the 
SEIR framework to include other interactions besides pathogens, we use the term 
Ingested for the Xi state and Resistant for the Xr state. The SEIR model tracks resource 
(host) states, but, in doing so, implies that there are two corresponding consumer states: a 
developing (which we call attacking) state Ya within the exposed host, and a state Yc in 
the infected host (which we recognize as “consuming”). So, while the SEIR model has 
four resource states, two (Xe & Xi) are synonymous with consumer states (Ya & Yc) 
because the pathogen population is counted in terms of infected hosts. One consumer 
state often tracked in predator-prey, host-parasitoid, and macroparasite-host models is the 
free-living stage that seeks out the resource. We call this the Questing state, Yq. Our 
general model thus has seven states (table 1): a Questing, Attacking, or Consuming 
consumer and a Susceptible, Exposed, Ingested, or Resistant resource. These states 
encompass the interactive state variables for perhaps all familiar consumer-resource 
models (with some minor modification in some cases). 

We describe the plausible transitions within and among the consumer and resource 
states using generalized functions (table 1). Generalized functions are placeholders for 
formulae that must be specified before settling on a final model. In addition to potential 
transitions from one state to another, each state has background birth and death rates, to 
which we could also add emigration and immigration (here we ignore this for simplicity). 
In some cases, a state is produced by another state (e.g., when adults and offspring are 
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separate states). Some transitions among states result from interactions. For instance, 
contact between a questing consumer and a susceptible resource leads to a transition to a 
consuming consumer and an ingested resource. We represent functions with a capital 
letter with subscripts indicating to and from states. For instance, Rsi indicates recovery to 
the susceptible from the infected state. Our generic functions are placeholders for actual 
functions, which might include one or more state variables, various parameters, and non-
linear terms. For instance, deaths could be density-dependent or independent. For this 
reason, the general model should not be written in matrix form because the state variables 
associated with each function remain unspecified. In several cases, there are mutually 
exclusive pathways in the general model. We indicate these using auxiliary parameters 
that range from 0 to 1 (usually 0 or 1) to specify (as switches) various consumer life-
history strategies (table SC1).  

To map the general consumer-resource model onto generic consumer life-history 
strategies, we determined the values for the auxiliary parameters and (some) functions 
that corresponded to each consumer type. These criteria are taxon-independent for both 
the consumer and the resource and state-specific. From these rules, we computed a 
cluster analysis (biplot of principal components 1 and 2, after defining the criteria in table 
SC1) to show the relationships among consumer types based on their model structures.  

We then solved for the basic reproductive number (R0) of a generalized consumer. 
R0 is a familiar metric calculated from demographic models that gives insight into the 
conditions required for a consumer to persist when encountering an unexploited resource 
population. Specifically, for R0 > 1, a consumer population is able to increase when rare. 
By definition, when estimating R0, there are assumed to be no other infected/consumed 
resources in the resource population (and consumer aggregation is not an issue). We 
assumed no vertical transmission (i.e., parent to offspring transmission), otherwise 
vertical transmission adds a positive term to R0. For multiple consumer states, R0 is the 
product of R0 for each of its states and can be computed as the product of: (i) the expected 
number of feeding contacts during the time spent in a questing state, (ii) the number of 
attacking consumers produced during a quest, and (iii) the number of questing states 
produced during the time spent in a consuming state (Supplementary D). More formally, 
R0 can be calculated with the next generation matrix approach (7). In brief, estimating R0 
requires constructing a transmission matrix, T, for contact rates and a transition matrix, S, 
for losses, conversion and production. The next generation matrix G = -T.S-1. The 
dominant eigenvalue of the next generation matrix is R0. After solving for the general R0, 
we used the information in table SC1 to calculate R0 for the 11 consumer life histories 
(Supplementary D). 

The general model, though seemingly complex, simplifies easily with the following 
steps.  

Specify: To model a generic consumer life history strategy, set the appropriate 
auxiliary parameters (e.g., table SC1). 

Delete: e.g., if there is not a resistant resource state, remove it as well as functions 
that output to or input from it. 

Synonymize: For pathogens or predators, assume a single consumer per ingested 
resource (i.e., Xi = Yc), and just track one. 

Define: Formulate the general functions. 
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Proportionalize: If the sum of two states is a constant, make one state a proportion of 
the other (e.g., in many human infectious disease models, the total human 
population size, X, is assumed to be constant, or in some predator-prey 
models, the predator population is assumed constant). 

Combine: In some cases we don’t care to distinguish states and can sum the left and 
right-hand sides of two or more equations together into a single differential 
equation, e.g., dY/dt = dYq/dt + dYa/dt + dYc/dt. Doing so can leave some 
state variables remaining and these must then be subsumed (see 
Supplementary E for an example). 

Subsume: If a state reaches equilibrium much faster than other states (e.g., the 
questing or attacking consumer in a host-parasite model), use separation of 
time scales to substitute the state for its quasi-equilibrium. If the states have 
dynamics on similar time scales, one can use the more complicated techniques 
of matched asymptotics, or combining them. 

Simplify: Transform complicated functions with linearization or by setting trivial 
parameters to 0 or 1, or by defining a time scale that is a function of a 
parameter, etc. A common way to clear summations from a denominator is to 
assume that some parameters are much larger than others. Finally, one can 
identify opportunities to composite parameters for a streamlined presentation. 

Track: Traditional population measures should be matched to model output. For 
predators, field ecologists count questing, attacking and consuming 
individuals, meaning that the abundance of subsumed states should still be 
tracked as part of the population. In contrast, for parasites, questing consumer 
stages are not normally counted in the parasite population.  

Supplementary E illustrates the process of building a simple model by applying our 
framework to an autotroph and its nutrient resource. We also derived several classic 
consumer-resource models (fig. 1, Supplementary F). For each classic model, we indicate 
values for each function and auxiliary parameter and rules for keeping, excluding, or 
collapsing state variables. Often, there was more than one pathway from the general 
model to a specific model, so we chose the most illustrative option. For classic consumer-
resource models in discrete time, we could have either used continuous time versions of 
these models or written a discrete time version of the general model. A supplementary 
model builder is available for download at the Science website as a .cdf program file 
named General_Consumer_Resource_Model.cdf  (requiring Mathematica or the free 
Wolfram CDF Player). 
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Supplementary B. Annotated tables of variables, functions and parameters 
Table SB1: State Variables 

X = ∑jXj  total resource population size 
Y = ∑jYj  total consumer population size 
 
Xs = Susceptible (and unattacked) resources. 
Xe = Exposed resources. These resources have been attacked by a questing consumer, 

but are not yet being ingested. 
Xi = Ingested (i.e., infected) resources. These resources are being eaten by a 

consumer. 
Xr = Resistant resources. A resistant class is a bridge between some classic predator 

and pathogen models. Resistant resources cannot be successfully attacked by a 
consumer. They may have immunity or be hidden from the consumer. In 
pathogen epidemiology, this state is often not further susceptible, referred to as 
Recovered and the recovered individuals are resistant. However, in many cases, 
such as concomitant immunity against helminth parasites, resistance is better 
represented as a continuum of susceptibility than by a state. Both hosts and prey 
have strategies to defend against or avoid consumers and this has energetic costs 
for prey (e.g., in terms of reduced feeding) and for hosts (in terms of investment 
into immune defense). For this reason, it is important to consider if resistance 
reduces survivorship (1/Dr) or births (Bxr). 

Ya = Attacking consumers. These consumers are engaged in subduing a resource for 
consumption. This state corresponds to the exposed resource. Examples include 
attacking predators, “incubating” pathogens, penetrating or migrating parasitic 
worms. 

Yc = Consuming consumers. These consumers are physically ingesting a resource 
and converting the energy into production shortly after. Examples include 
feeding predators, parasites established in their hosts, and aphids eating plants. 

Yq = Questing consumers. These consumers are not in contact with resources (they 
are passively or actively seeking resources). Examples include parasite eggs, free 
virions, hunting predators, flying mosquitoes. 

 
Table SB2: Generalized Functions 

Ai = phenomenological description of aggregation of consumers per ingested resource 
(pertains to macroparasites, micropredators and perhaps to social predators). A = 
1, indicates a Poisson distribution. Aggregation helps determine how many 
consumers are lost when a resource dies. Here, we consider the effect of 
aggregation on resource mortality rates, but note that aggregation can be applied 
to other vital rates, such as consumer mortality rate.  

Bcc = vertical transmission of a consumer (pathogen or macroparasite) from parent to 
offspring. Ignored here unless otherwise specified. 

Bqc  = the production rate of questing individuals from consuming individuals (as per 
traditional predator models). E.g., Under the typical assumption that consumption 
increases consumer birth and reduces resource survival, or birth, or both, a 
general per-capita formulation is Bqc = w[g(Bxs – Bxi) + Ki]Xi /Yc where w is an 
index of conversion of consumption to a birth and g is the relative gain of 
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reducing resource birth rate to killing a resource (g = 0 for predators). This and 
other birth terms could also model somatic growth that contributes to increased 
biomass density. 

Bxi = the birth rate of an ingested resource. While not explicitly modeled here, this is 
an important function to consider prior to modeling dynamics. Under some cases, 
Bxi simplifies to Bsi. We can expect that Bxi is a function of the amount of energy 
consumed from the resource that results in a decrease in birth rate. 

Bex = (Bes + Bee + Bei + Ber). Here, and below, resource births into a state could come 
from other states, depending on the biology of the system. 

Bix = (Bis + Bie + Bii + Bir) 
Brx = (Brs + Bre + Bri + Brr) 
Bsx = (Bss + Bse + Bsi + Bsr) 
Caq = the rate of contact (attack to be more specific) between questing consumers and 

susceptible hosts. Traditionally, this is mass action, but could be ratio dependent, 
Levy flight, have an aggregation exponent, etc. 

D   = the background death rate for each state. The subscript indicates the state. 
Although this death rate includes predation by consumers not specified in the 
model, it does not include the effect of a consumer on the death rate of the 
resource. However, Da could be a function of the types of resources that questing 
consumers contact because such states might vary in their sensitivity to 
consumers that defend themselves. This would be the case for parasites that have 
infectious states with differential survival in different host states. Note that for 
most consumers, Yc = Xi, and Ya = Xe, so the complex term jDxY/X simplifies to 
jDx. The exception is when there is more than one intimate (j = 1) consumer per 
resource (as in a macroparasite). In this case, the loss to the consumer population 
increases with the number of consumers per resource, requiring us to specify Y/X 
in that loss term of the general model. Note also that death of a questing parasite 
state could occur through contact with an ingested or resistant (resource) host, 
e.g., Dq = Yq (dq + β(Xe + Xi + Xr)). 

Fa = the rate at which the attacking consumer fails in its attack. For consumers that 
can re-quest (m = 1), the attacking consumer can return to questing after it fails. 
For other types of consumers it cannot. For some consumers, failure might depend 
on the number of consumers attacking, or on whether the attacked resource is 
resistant. For social predators, failure might decrease with the number of 
consumers per resource and, for some pathogens, there might be a threshold 
exposure below which the exposed host is able to defend. Such situations can 
create an Allee effect for the consumer. 

Hca = the rate at which attacking consumers handle the exposed resource prior to 
converting it for production. For a pathogen, this is when the host is infected, but 
not infectious. For a macroparasite, it is the time from contact to patency. For a 
larval parasitoid, it is the time between contact and larval feeding.  Note that 
protelean parasites also return to questing after attacking (so that Hqa = Hca). 

Hqc = the rate at which some consuming consumers finish feeding before questing 
again (especially micropredators). 

Irs = the rate that susceptible hosts protect themselves from consumers (thereby 
becoming resistant). 
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Ki = the rate that a consumer adds to the mortality/removal rate of an ingested 
resource. For a predator, the ingested resource is already dead, so Ki is the rate at 
which the predator consumes the resource and then returns to questing. For 
consumers of non-living resources, Ki is the rate at which the consumer removes 
the resource. For parasites, killing is the additional host mortality related to 
consumption by the parasite. When there is one consumer per resource, Ai = 1, 
and Yc = Xi, so the complex arrangement AiKiYc/Xi reduces to Ki, which can be 
expressed either as a per-capita loss term for the consumer (e.g., αYc) or the 
resource (αXi), depending on the state being modeled. 

R   = the rate that ingested resources recover from a consumer. Recovery is related to 
the death, failure, and handling of consuming consumers. Note that for cases 
where more than one consumer attacks a resource, recovery implies a 
simultaneous loss of all consumers. There are various transitions from exposed 
and ingested resources to consumers, namely: individuals recovering to the 
resistant/immune class: Rrx = (Rre + Rri); individuals recovering back to the 
susceptible class: Rsx = (Rse + Rsi); resources leaving the ingested/infective state; 
Rxi = (Rri + Rsi); resources leaving the exposed state: Rxe = (Rse + Rre). A unique 
aspect of autotrophs is that their resources (nutrients) can be directly recycled 
after their death and degradation. This can be modeled by establishing a resistant 
resource state with inputs from resource death, and outputs to the susceptible 
resource state.  

Vsr = the rate that resistant resources become susceptible to consumers again. For 
autotrophs this may relate to nutrient recycling. 

 
Table SB3: Auxiliary parameters 

f = 1 indicates that the consumer kills the host as a result of feeding (fatal attack).  
j = joint death (i.e., intimacy) between consumer and resource, where jc indicates the 

consuming consumer and ja the attacking consumer. This auxiliary parameter is 
set to 1 if the consumer dies when the resource dies (most parasites), to 0 for a 
predator and potentially > 0 for a consuming micropredator. We note that 
killing/consuming the resource in the infected/ingested state is a loss term for the 
consuming consumer whether or not there is joint death (explaining the lack of a 
jc term associated with killing by the consumer). Here, transmission or death is 
indicated by the presence or absence of an associated gain term in the questing 
consumer (defined by f, above). We allow separate intimacies for attacking (ja) 
and consuming (jc) consumers. Finally, intimacy is often associated with 
durability of an interaction. For this reason, intimate associations (parasites) often 
spend most of their time consuming whereas non-intimate associations (predators) 
spend most of their time questing. 

m = multiple attacks by questing consumer (1 yes, 0 no): m = 1 for predator-like 
consumers: m = 0 for parasite-like consumers. 
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Supplementary C. Consumer strategies and results of a principal components 
analysis (PCA) 

 
The 11 consumer strategies presented in fig. 2, and below, are operationally defined 

by biological criteria (table SC1). These biological features are dichotomous, 
taxonomically independent, are based on the feeding mode for an individual consumer 
versus a specific resource, and often differ among stages for consumer species with 
complex life cycles. They sometimes differ for different resources. Asexual 
multiplication following access to the resource by an individual consumer represents just 
that single consumer. A few examples across diverse taxa are provided. See Lafferty and 
Kuris (6) for more rationale. 
 
If the resource is living and the consumer feeds on more than one prey/host, we have:  

Predator – prey fitness is reduced to zero, deaths of prey are required to extend 
consumer life cycle, a single predator kills its prey (thus impact on a prey 
is density-independent), prey death does not lead to predator death. 
Examples: squids, mosquito larvae on algae. 

Social predator – like typical predators, but more predators per attacked prey kill 
prey more effectively. Examples: wolves on moose, army ants. 

Micropredator – prey/host fitness is not reduced to zero; death of the host is not 
required to continue consumer life cycle, impact on host is density-
dependent. Examples: adult female mosquitos, cicadas, giraffes. 

If the resource is living, death of the host leads to death of the consumer, and the 
consumer feeds on just a single individual resource (host), we have: 

Macroparasite – Host fitness is not reduced to zero; impact on host is density-
dependent (impact on the host increases with the number of parasites). 
Examples: adult schistosomes, malaria in mosquitos, corn borer grubs. 

Pathogen – Host fitness not necessarily reduced to zero, impact on host is density-
independent (impact is controlled by extent of effective host defenses, 
limiting the asexual reproduction of the consumer), Examples: malaria in 
humans, scale insects. 

Castrators – Host fitness reduced to zero; impact on host is density-independent. 
Examples: larval trematodes in snail hosts, Sacculina on crabs, boll weevil 
larvae. 

Parasitoid – Host fitness reduced to zero, consumer kills host to complete its life 
cycle; impact on host is intensity-independent. Examples: larval 
ichneumonid wasps, Pasteuria bacteria in Daphnia, bruchid beetles in 
seeds. 

If the resource is not living (does not give birth), resources flux into the system, we have: 
Detritivore – As for a predator, but feeds on non-living organic particles. 

Examples: earthworms, sand dollars. 
Scavenger – As for a social predator, but feeds dead organisms. Examples: 

marabou storks, hagfish, burying beetles. 
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Decomposer – As for a macroparasite, but feeds on a dead food source. 
Examples: termites, blow flies, oyster mushrooms. 

Autotroph –Resources (nutrients) either flow through the system or are recycled 
on the death of consumers, or both. Examples: plants, chemosynthetic 
bacteria. Plants are often also limited by space (which influences access to 
light), though space limitation does not define their consumer strategy. 
Supplementary E is an example autotroph model.  

 
 
 
 
 
 
 

 

Fig. SC1. Principal components biplot of generic consumer strategies grouped by 
model structure. 
Table SC1 lists all the differences and similarities used for clustering. Tables SC2-4 show 
the data used for the figure. Arrows indicate how the functions listed in table SC1 affect 
the PC axes. Blue rectangles indicate groups that have the same general structure for R0 
specified in Supplementary online text D). Red markers are predator-like and blue 
markers are parasite-like.
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To employ the PCA, categorical variables in table SC1 were first converted to either 
0 or 1. For a micropredator, jc was set to 0.5 because it was assumed to be intermediate to 
a predator or parasite. Bx was set to 1 or 0 to distinguish consumers that feed on live 
resources (= 1), from dead resources (= 0). One consumer per resource was represented 
by 0, and multiple consumers per resource represented by 1. The first two principal 
components separated most consumer strategies and that is what is plotted in fig. SC1, 
but all data are reported below. The third component mostly distinguishes consumers 
feeding on living prey from those that consume non-living material, clustering 
decomposers with detritivores and scavengers. 

Table SC2. Eigenvalues. 
Strategy Prin1 Prin2 Prin3 Prin4 Prin5 

Autotroph -2.84 -1.52 -1.08 1.81 0.49 

Detritivore -2.08 -0.39 0.11 -0.43 -1.15 

Predator -1.56 -0.01 1.57 -0.09 -0.12 
Social 
Predator -1.47 1.21 0.67 -0.66 0.89 

Scavenger -1.99 0.82 -0.79 -0.99 -0.14 

Micropredator 0.41 2.31 0.06 0.99 -0.19 

Parasitoid -0.61 -0.35 1.36 -0.15 0.04 

Castrator 0.89 2.14 -0.05 0.96 -0.11 

Pathogen -0.25 0.84 -1.53 -0.63 -0.55 

Macroparasite 1.10 -1.55 0.96 -0.67 0.54 

Decomposer 1.89 -1.19 0.43 -0.25 -0.03 

Table SC3. Proportion of the variance explained by each eigenvalue. 
Number Eigenvalue Cum Percent 

1 4.10 51 
2 1.48 74 
3 0.99 82 
4 0.89 93 
5 0.33 99 
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Table SC4. Eigenvectors. 

 
Prin1 Prin2 Prin3 Prin4 Prin5 

m (multiple quests) -0.45 0.31 0.10 0.14 -0.13 

ja (intimacy) 0.45 -0.31 -0.10 -0.14 0.13 

jc (intimacy) 0.47 -0.17 -0.10 -0.03 0.08 

f  (fatal ingestion) -0.41 -0.19 0.28 -0.22 0.30 

Ai (aggregation) 0.05 0.64 -0.47 -0.30 0.53 

Xs (births, Bs) 0.26 0.19 0.73 0.17 0.52 

Xi (births, Bi) 0.29 0.43 0.01 0.58 -0.28 

f (Dy) (recycling) -0.23 -0.34 -0.36 0.67 0.49 
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Supplementary D. Methods and solutions for a generalized R0. 
For R0 > 1, a consumer population is able to increase when rare. R0 can be calculated 

with the next generation matrix approach as per (7). Estimation of R0 requires 
constructing a transmission matrix, T, for contact rates and a transition matrix, S, for 
losses, conversion and production. Here, we also assume an initial condition where 
population growth rates are substitutable for per-capita rates. The next generation matrix 
G = -T.S-1. The dominant eigenvalue of the next generation matrix is R0. Assuming no 
vertical transmission (i.e., Bcc = 0), the transmission matrix, T, includes rates that a 
consumer attacks new resources. For the general model, this matrix has one non-zero 
element: 
 To A To C To Q 
From A 0 0 0 
From C 0 Bcc = 0 0 
From Q Caq 0 0 
 

The transition matrix, S, for the general model includes loss rates and all the 
possible transition rates among the three consumer states (to:from). It has six non-zero 
elements (the diagonal represents loss rates, L, of A, C and Q): 
 To A To C To Q 
From A -La c:a q:a 
From C 0 -Lc q:c 
From Q 0 0 -Lq 
 

The inverse of S is: 
 To A To C To Q 
From A -1/La -c:a/ LaLc - (Lc q:a + c:a q:c)/LaLcLq 
From C 0 -1/Lc -q:c/LcLq 
From Q 0 0 -1/Lq 
 

The next generation matrix is the dot product between – T and the inverse of S, or: 
 To A To C To Q 
From A 0 0 0 
From C 0 0 0 
From Q Caq/La c:a Caq/LaLc Caq(Lc q:a + c:a q:c)/LaLcLq 

 
R0 for the consumer is the dominant eigenvalue of the next generation matrix, 

namely: 
(Caq/La Lq) • (c:a q:c/Lc + q:a) 

where, from the general model above: 
La = Da + Fa + ja De + Hca 
Lc = Dc + jc Di + Ki + m (1–f) Hqc 
Lq = Dq + Caq 
c:a = Hca 
q:a = m Fa 
q:c = Bqc + m[Ki + (1–f) Hqc] 
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This can be expressed in biological terms. A component of R0 common to all consumers, 
R01, includes the success of sequential states. This is the product of three ratios: (1) the 
proportion of successful quests, (2) The proportion of attacking consumers that proceed 
to consuming, (3) the number of questing consumers produced per consuming consumer. 

Accordingly R01 = 
(1) Caq/Lq = Caq /(Caq+Dq) • 
(2) c:a/La = Hca/(Da +Fa+ja De +Hca) • 
(3) q:c/Lc = (Bqc+ m(1-f)Hqc+mKi))/((Dc+jcDi+m(1–f)Hqc+Ki)) 
 
Note that the auxiliary parameters m, f and jc influence ratio (2), indicating that 

much of the variation in R01 among consumers relates to the number of questing 
consumers produced per consuming consumer. 

Consumers, such as predators and micropredators, for which the questing consumer 
can quest again after an attack (m = 1) have an additional aspect of R0, called R02 (i.e., for 
these consumers R0 = R01 + R02). R02 is the product of the proportion of successful quests 
(3) and the proportion of failed attacks that return to questing (4). For relevant 
parameterization, R02 is always less than one (it is simply a way to discount the cost of 
failure for consumers that can quest again after failure). For most of these cases, ja = 0, 
and R02 = 

  (3) Caq/Lq = Caq/(Caq+Dq) •  
  (4) q:a/La = Fa/(Da+ Fa +Hca) 
We note that one could further simplify R0 by assuming that some rates are faster 

than others. In particular, if death rates are assumed to be very slow relative to some other 
rates, many of the ratios that comprise R0 approach 1 or other simple ratios. 

 

Table SD1. R0 for the 10 consumer life-history strategies. Equations derive from 
inputting values from table SC1 into equations for R0. 

 
Consumer Life History R0 
Detritivore, Predator, 

Social Predator, 
Scavenger 

CaqHca(Bqc+Ki) / [(Caq+Dq)(Da+Fa+Hca)(Dc+Ki)] 
+ CaqFa  / [(Caq+Dq)(Da+Fa+Hca)] 

Micropredator 
CaqHca(Bqc+Hqc+Ki) / 

[(Caq+Dq)(Da+Fa+Hca)(Dc+Ki+jcDi+Hqc)] 
+ CaqFa / [(Caq+Dq)(Da+Fa+Hca)] 

Castrator, Pathogen, 
Macroparasite, 

Decomposer, non-
protelean parasitoid 

CaqHcaBqc / [(Caq+Dq) (Da+Fa+De+Hca) (Dc+Di+Ki)] 

 
Of particular interest is the saturation with Caq, because it is common to assume that 

contact rate increases with the density of resources, X, or Caq = f(βX), where β represents 
a per-capita contact rate (i.e., mass action). Under this common assumption, and plotting 
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R0 as a function of X, R01 increases with resource density, and then asymptotes to a 
maximum set by handling and killing rates (table SD2, fig. 2B). R01 saturates because 
there is a maximum number of resources that a consumer can handle per unit time. 
Furthermore, because R01 > 1 is the key condition for a consumer being able to persist on 
a resource, a consumer can never invade a resource species when the maximum value 
attainable by R01 is smaller than 1, no matter how abundant the resource is, making it 
harder for the consumer to control the resource (3). In the computation of R01, or when 
subsuming the questing state into the other states (through separation of time scales), the 
ratio, k, of losses from non-contacts (Dq) to losses from contacts (β) defines the resource 
density at which contact is half the maximum, otherwise known as a half-saturation 
constant, which corresponds to (but is not identical to) the familiar Michaelis-Menton 
equation for enzyme kinetics. Although consumption and handling rates increase 
population growth, they do not affect the half-saturation constant. The smaller the half-
saturation constant (the value of X at which R0 is half its maximum asymptotic value), the 
quicker R01 saturates with resource density, and the less a consumer is able to persist on a 
poor-quality resource. Saturation due to limits on the questing consumer is faster for 
consumers with durable, efficient questing consumers (characteristics more likely to 
describe a predator than a parasite). The half-saturation constant for consumption also 
increases the resource threshold density for consumer persistence (table SD2). 

Table SD2. R0 Max: 
Predator 
[Hca Bqc +Fa Dc +Ki(Fa +Hca) ] / [(Dc +Ki)( Da + Fa +Hca)] 
 
Micropredator 
[Hca (Bqc +Hqc +Ki) + Fa (Dc +jc Di + Hqc +Ki] / [(Dc + jc Di + Hqc +Ki)(Da + Fa +Hca)] 
 
Parasite 
Hca Bqc  / [(Dc + Di +Ki)(Da + De + Fa + Hca)] 
 
R0 still saturates when a reduced-variable consumer-resource model is derived from the 
general model, but this is not the same as a saturating functional response. The form of 
the functional response depends on whether the questing consumer is subsumed (assumed 
to reach equilibrium fast) (8). If so, the corresponding complication of the remaining 
equations takes the form of the classic Type II functional response (Michaelis-Menten 
kinetics, or gXs /(X + Dq/β)), where g is a composite of functions and β is a contact 
parameter representing mass-action. Subsuming the questing state is most likely in 
pathogen models, which, ironically, rarely consider a saturating functional response (9), 
though this is often justified with the assumption that infective stages are very short lived. 
As a consequence of saturation, the proportion of the resource population that can be 
attacked by a questing consumer declines (reciprocally) with the abundance of the 
resource, leading to safety in numbers for the resource. Familiar mass-action disease 
models and frequency-dependent sexually transmitted or vector-transmitted disease 
models are end points along a continuum of this saturating functional response (9). When 
the questing consumer is not assumed to rapidly reach equilibrium compared to the other 
states (i.e., for a predator), R0 still saturates, but, because the questing consumer is a 
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dynamic variable, the functional response appears linear in the absence of further 
assumptions or function specification (see supplementary online text F1 for a worked 
example of the Lotka-Volterra predator-prey with linear functional response). In other 
words, a saturating R0 is universal among consumers. However, when reducing states by 
subsuming, a saturating functional response (which represents a mortal questing 
consumer) is imposed only when the questing consumer is subsumed (as one might 
assume for a parasite). Summing states can also create saturating functional responses, 
which in some cases can take on complicated forms. 
 
Many species change diet from one life stage to the other. This results in at least five 
distinct model structures, each of which has, at its core, a basic structure (fig. 3). For 
instance, protelean life histories add a new transition, specifically the questing state 
returns to questing after an attack (Hqa = Hca). Furthermore, some protelean consumers 
have a free-living consumer stage (others do not). Not surprisingly, this complexity has 
dynamic consequences. For instance, changes to model structure lead to different 
structures for R0, with examples for the protelean life history given in Table SD3 under 
the assumption that the free-living stage is non-feeding (compare to table SD1, row 3). 
 

Table SD3. R0 for ontogenetic diet shifts. 

 

Protelean parasitoid CaqHca(Bq+Ki) / [(Caq+Dq)(Da+Fa+Hca)(Dc+Di+Ki)] 
+ Caq(Fa+Hca)/[(Caq+Dq)(Da+Fa+Hca)] 

 
Protelean 

macroparasite, Protelean 
decomposer 

CaqHca(Bq+Hqc) / [(Caq+Dq)(Da+Fa+Hca)(Dc+Di+Hqc+Ki)] 
+ Caq(Fa+Hca) / [(Caq+Dq)(Da+Fa+Hca)] 
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Supplementary E: How to derive a simple model from the general model 
To illustrate how to build simple models from the general model, we consider an 
autotroph, such as a plant or alga. Autotrophs are the foundation of food webs and they 
also have some interesting differences from more traditional consumer-resource models. 
Most importantly, this example shows how going from a large model to a small one 
retains the legacy of the general model in the form of model structures and the 
components of composite parameters. The reduction process also clarifies the 
assumptions used to simplify the model. 

Our terminology for the general model states comes from animals, but translates to 
autotrophs. As for scavengers and detritivores, terms like killing apply only by analogy. 
The non-living resource fluxes through the system or is recycled within it, or both. 
Autotrophs require several resources, but most models track only the most limiting 
resource. If individuals can monopolize the limiting resource (i.e., contest competition for 
space) the model structure will differ if the resource is diffuse (i.e., scramble competition 
for nutrients). Here, we model scramble competition because it is most analogous to other 
consumer-resource interactions. 

For scramble competition, the resource can be thought of as occurring in some 
concentration in the environment. Questing autotrophs make contact with the available 
resource, reduce its concentration in the attacking state and convert it to production in the 
consuming state. Unlike most classic models, an individual autotroph can potentially 
engage in all three consumer states simultaneously. A simple scramble competition 
model for an autotroph is Tilman’s model for plant growth (11). In Tilman’s model, 
nutrients flux into the system from the outside at a particular concentration, are reduced 
through consumption and flux out of the system at a reduced concentration. Under 
scramble competition, autotrophs are not intimate with their resources. To this extent, 
they are most like scavengers (or even filter feeding sessile animals). But unlike 
scavengers, autotrophs can have recyclable resources (e.g., nutrients released when a 
plant dies can eventually be added to the nutrient pool). 
 
In this example, we use the approach outlined in the methods for simplifying the general 
model. Briefly, we first lay out the system of equations and explain how it can be 
specified to model the autotroph strategy. This leaves several functions that are redundant 
or irrelevant and can be deleted. We then synonymize the exposed and ingested resource 
states into the attacking and consuming states by assuming that nutrients are tracked in 
consumer units. After specifying the functions, we solve for equilibria and simulate 
dynamics. Because the five-state model is cumbersome, we next use separation of time 
scales to subsume the resistant resource state and sum the consumer states together, 
leading to a more traditional two-state consumer-resource model. We then approximate 
the dynamics of the two-state model with a single-state model and a phenomenological 
model based on the logistic equation with saturating contact rate. The results show the 
value of using the general model for building simple models. 
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The general model system of equations 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝐪𝐜 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝑲𝐢 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝐚𝐪  
𝐝𝐘𝒂 𝐝𝐭 = 𝑪𝐚𝐪 −𝑫𝒂 −𝑯𝐜𝐚 − 𝑗!𝐷! 𝑌! 𝑋! − 𝐹!  
𝐝𝐘𝒄 𝐝𝐭 = 𝐵!! −𝑫𝒄 +𝑯𝐜𝐚 − 𝑗!𝐷! 𝑌! 𝑋! − 𝐴!𝑲𝐢 𝑌! 𝑋! −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝑩𝐬𝐱 −𝑫𝒔 + 𝑅!" + 𝑽𝐬𝐫 − 𝛪!" − 𝑪𝐚𝐪  
dX! dt = 𝐵!" − 𝐷! − 𝑅!" − 𝐻!" + 𝐶!"  
dX! dt = 𝐵!" − 𝐷! − 𝑅!" + 𝐻!" − 𝐾!  
𝐝𝐗𝐫/𝐝𝐭 = 𝑩𝐫𝐱 − 𝐷! + 𝑅!" − 𝑽𝐬𝐫 + 𝛪!" 
 
Specify an autotroph: 
𝑚 → 1, 𝑓 → 1, 𝑗! → 0, 𝑗! → 0,𝐵!" → 𝜌𝑋!,𝐵!" → 0,𝑌! 𝑋! → 1,𝑌! 𝑋! → 1,𝐴! → 1,

𝑉!",𝐵!" → 𝑓(𝐷!) 

Delete the irrelevant functions: 
𝐵!!,𝐵!",𝐷! ,𝐹! , 𝛪!",𝑅!",𝑅!",𝑅!",𝑅!" 
 
Synonymize the redundant state variables. With a single consumer per ingested resource 
(i.e., Xi ≅ Yc), dXe/dt ≅ dYa/dt, this leaves an initial system of five equations: 
𝐝𝐘𝒒 𝐝𝐭 = 𝐵!" − 𝐷! + 𝐾! − 𝐶!"  
𝐝𝐘𝒂 𝐝𝐭 = 𝐶!" − 𝐷! − 𝐻!"  
𝐝𝐘𝒄 𝐝𝐭 = −𝐷! + 𝐻!" − 𝐾!  
𝐝𝐗𝒔 𝐝𝐭 = 𝐵!" − 𝐷! + 𝑉!" − 𝐶!"  
𝐝𝐗𝒓 𝐝𝐭 = 𝑓(𝐷!)− 𝑉!"  
 
Define functions. Contact is mass action (𝐶!" =βYqXs). Per-capita death rates (dy) do not 
differ among consumer states. A “killing” rate (α) of nutrients is associated with a 
proportional production rate (e) of additional questing states. Resources are expressed in 
plant units to simplify the terms. Resources flux through the system at rate 𝜌, entering at 
a concentration X0, and leaving at a concentration Xs after being depleted by consumers. 
A proportion (λ) of the resources from a dead consumer are recycled back into the system 
after being temporarily unavailable while decomposing (v) in the resistant state.  
𝐝𝐘𝒒 𝐝𝐭 = 𝑒𝛼𝑌! − 𝑑!𝑌! + 𝛼𝑌! − 𝛽𝑌!𝑋!    
𝐝𝐘𝒂 𝐝𝐭 = 𝛽𝑌!𝑋! − 𝑑!𝑌! − ℎ𝑌!  
𝐝𝐘𝒄 𝐝𝐭 =− 𝑑!𝑌! + ℎ𝑌! − 𝛼𝑌!  
𝐝𝐗𝒔 𝐝𝐭 = 𝜌𝑋! − 𝜌𝑋! + 𝑣𝑋! − 𝛽𝑌!𝑋! 
𝐝𝐗𝒓 𝐝𝐭 = 𝜆𝑑!(𝑌! + 𝑌! + 𝑌!)− 𝑣𝑋! 
 
This system has a finite equilibrium that can be solved analytically or simulated 
numerically. The joint solution to this system of equations can be plotted to show an 
autotroph population over time as it invades an unexploited resource with slow, but 
exponential growth, then settles at a carrying capacity set by depletion of finite resources 
(solid lines, fig. SE1). 
 
 



 
 

19 
 

 
 
Fig. SE1. Simulations of the autotroph models over time (from invasion to 
equilibrium). Time is on the X-axis. Autotroph abundance of different states (or all 
states combined) is on the Y-axis. One autotroph is added to a system with nutrients and 
its population slowly expands until a ceiling of 881 set by declining nutrient 
concentrations. The solid lines are from the five-state model (resource states not shown): 
green = Questing (Yq ), magenta = Attacking (Ya), cyan = Consuming (Yc), thick blue line 
= All autotrophs (Yq + Ya + Yc = Y). The red-dotted line is the simple two-state autotroph-
nutrient approximation. The brown-dotted line is the one-state autotroph approximation 
assuming no saturating contact. The orange-dotted line is the single-state (autotroph) 
approximation with saturating contact and a logistic carrying capacity. Parameters:  𝑒 →
.8,𝛽 → .8,𝑋! → 20, ℎ → .03,𝜌 → .4,𝛼 → 0.07,𝛽 → .8,𝑑! → .01, 𝑣 → .1, 𝜆 → 1. 
Time  from  0  to  3000.Equilibrial  values:    𝑋! = 0.07,𝑌! = 304,𝑌! = 420,𝑌! = 157,

𝑌 = 881.     

 
 
Combine the consumer stages by summing all the consumer equations and only track 
their total Y. 
𝐝𝐘 𝐝𝐭 =𝛼𝑒𝑌! − 𝑑!𝑌 
𝐝𝐗𝒔 𝐝𝐭 = 𝜌𝑋! − 𝜌𝑋! + 𝑣𝑋! − 𝛽𝑌!𝑋! 
𝐝𝐗𝒓 𝐝𝐭 = 𝜆𝑑!𝑌 − 𝑣𝑋! 
 
 

time
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Subsume state variables using separation of time scales, with a preference for subsuming 
states likely to equilibrate faster than others. We are least interested in tracking the 
inaccessible nutrient pool, and we will assume that it equilibrates quickly enough that it 
can be subsumed into the dynamics of the susceptible resources. For a dynamic 
consuming state and susceptible state, assume dXr/dt equilibrates fast as does the relative 
proportions of consuming states: 
𝑋! →

!!!!
!
,𝑌! →

!(!!!)!!
!!!!!

,𝑌! →
!!!!!

(!!!!)(!!!!)!!!!(!!!!!!)
,  and substitute into dY/dt, 

dX/dt:  
 

𝐝𝐘 𝐝𝐭 =
𝛼𝛽𝑒ℎ𝑌𝑋!

(𝑑! + ℎ)(𝑑! + 𝛼)+ (𝑑! + ℎ + 𝛼)𝛽𝑋!
− 𝑑!𝑌 

 

𝐝𝐗 𝐝𝐭 = 𝜌(𝑋! − 𝑋!)+ 𝜆𝑑!𝑌 −
(𝑑! + ℎ)(𝑑! + 𝛼)𝛽𝑌𝑋!

(𝑑! + ℎ)(𝑑! + 𝛼)+ (𝑑! + ℎ + 𝛼)𝛽𝑋!
 

 
which, after collecting parameter sets into composites w = (𝑑! + h)(𝑑! + α), z = (𝑑! + h 
+ α), g = 𝛼𝑒ℎ  and k = w/β , the two-state system of equations can be written as: 
 

𝐝𝐘 𝐝𝐭 =
𝑔𝑌𝑋!
𝑘 + 𝑧𝑋!

− 𝑑!𝑌 

𝐝𝐗 𝐝𝐭 = 𝜌(𝑋! − 𝑋!)+ 𝜆𝑑!𝑌 −
𝑤𝑌𝑋!
𝑘 + 𝑧𝑋!

 

 
Continuing with the assumption that space is not limiting, the joint equilibria are: 
𝐘 = !(!!!!)(!!!!)

!!!!"!  (!!!!)
, 𝐗 = !!!

!!!!!
  

 
These joint equilibria show how the final nutrient concentration, sometimes called R-star 
(11), is independent of the initial nutrient concentration, flux, or nutrient recycling. In 
contrast, an autotroph’s final abundance increases with initial nutrient concentration, flux 
and recycling. The simple model (red-dotted line, fig. SE1) has the same asymptote as the 
five-state model (thick-blue line, fig. SE1), but it equilibrates faster due to the assumption 
of separation of time scales. 
 
Simplify using approximations. One could write a single model for Y assuming that X 
equilibrates quickly. Unfortunately, the solution for X at equilibrium as a function of Y 
has two complicated roots. A simpler approach would be to assume that z is very small 
(no saturating contact function) and then solve for Xs at equilibrium so that a one-state 
model is:  
𝑋 → (!!!!!"!!)

!"/!!!
 , and substitute into dY/dt, 

 
𝐝𝐘 𝐝𝐭 = !"(!!!!!"!!)

!"!!"
− 𝑑!𝑌  
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which is analogous to Schoener’s (12) single-level competition model but with nutrient 
recycling. This model (brown-dotted line, fig. SE1) has the same equilibrium as the five-
state model (thick-blue line, fig. SE1), but equilibrates very fast because, in addition to 
separation of time scales, contact rate does not saturate at the initially high nutrient 
concentration. 
 
Alternatively, we can use the solution for the carrying capacity and the exponential 
growth rate above, combined with density dependence from the logistic growth curve. 

𝐝𝐘 𝐝𝐭 = (
𝑔𝑌𝑋!
𝑘 + 𝑧𝑋!

− 𝑑!𝑌) 1−
𝑌
𝑌

 

This approximation (orange-dotted line, fig. SE1) fits the dynamics even better than the 
two-state model (red-dotted line fig. SE1), with the disadvantage of having a 
phenomenological structure.  
 
Track the autotroph population as Y = Yq + Ya + Yc (fig. SE1). Whereas, for the resource 
concentration, we might choose to track only the Xs component or ignore resources 
entirely. 

Ideally, simple models will capture important aspects of the general model such as 
equilibria and R0, and hopefully, the simple model will also approximate the dynamics. 
Simulations of the four models over time show that they differ in the rate at which they 
approach the equilibrium. The two-state model, for instance, approaches faster than 
expected because several elements are assumed to reach equilibrium quickly. In 
particular, the two-state model does not account for the delay in nutrient recycling that 
occurs when nutrients in dead consumers are temporarily unavailable. The single-state 
model has these limitation plus the lack of the five-state model’s saturating contact rate, 
leading to the poorest match to the five-state model. For the logistic approximation, self-
limitation is purely phenomenological, so, while it fits well, we should not be surprised 
that it differs a bit from the depletion of nutrients. 
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Supplementary F. Reduction of the general model into classic consumer-resource 
models 

 
Below, we use the approach in the Methods to derive the following classic consumer 

resource models from the general model: 
1) Lotka-Volterra (predator-prey) 
2) Saturated predator (spruce budworm) 
3) Invulnerable Prey (prey with refuge) 
4) Chemostat (bacteria in culture) 
5) SI (non-lethal disease) 
6) SIR (Kermack-McKendrick non-lethal disease) 
7) SEIR (measles) 
8) SEI (rabies) 
9) QSI (insect pathogen) 
10) Macroparasite 
 
 Deriving classic models from a general framework shows the relationships among 

these models, specifies simplifying assumptions, and reveals composite parameters (table 
SF1). As in Supplementary E, we first list the seven equations describing the general 
model. We used bold font to report components of the general model that correspond to a 
particular classic model. Most classic models don’t consider a resistant consumer state 
and ignore at least one state variable when tracking the consumer population (and 
sometimes ignore a resource state variable as well). Unspecified state variables refer to 
sums across states (e.g., X = Xs + Xe + Xi + Xr). We also indicate equilibria with an 
accent (e.g., 𝑋). In the derivations, we specify the generalized functions using several 
parameters that represent per-capita rates: birth rate = b, death rate = d, flux rate = ρ, 
contact rate = β,  conversion rate = e, killing rate = α, handling rate = h, density 
dependence = µ, loss of resistance = v, gain of resistance = ι, recovery from ingestion = r, 
and parasite aggregation = κ. All except the macroparasite model reduce state variables 
by equating exposed resources to attacking consumers and ingested resources to 
consuming consumers. All classic models further reduce state variables through 
separation of time scales. Most models reduce the complexity of the functional response 
by assuming that some rates (e.g., handling or questing, or both) happen fast. For 
instance, we often assume that the dynamics of some states are fast relative to others, 
such that they rapidly reach their quasi-equilibria relative to Yq. However, the Lotka-
Volterra model reduces the complexity of the functional response by ignoring the 
attacking and consuming states of the consumer. Most general functions are linear 
products of state variables, but several models use one or more non-linear functions (e.g., 
for density dependence or when assuming constant population sizes). Finally, several 
simple-looking parameters are actually composites of many parameters (the reduction 
allows us to define these explicitly), including the half-saturation constant k. 
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1) Lotka-Volterra predator-prey model (13), with further reduction to the logistic 
The Lotka–Volterra prey–predator model is perhaps the most widely used consumer-
resource model in Ecology. It is simple but has unusual features that are not often 
specified, including complicated composite parameters and tracking only questing 
consumers. Here, the prey has Malthusian growth in the absence of the predator and 
contact with the predator is mass action.   
 
The general model 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝐪𝐜 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝑲𝐢 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝐚𝐪  
𝐝𝐘𝒂 𝐝𝐭 = 𝑪𝐚𝐪 −𝑫𝒂 −𝑯𝐜𝐚 − 𝑗!𝐷! 𝑌! 𝑋! − 𝐹!  
𝐝𝐘𝒄 𝐝𝐭 = 𝐵!! −𝑫𝒄 +𝑯𝐜𝐚 − 𝑗!𝐷! 𝑌! 𝑋! − 𝐴!𝑲𝐢 𝑌! 𝑋! −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝑩𝐬𝐱 −𝑫𝒔 + 𝑅!" + 𝑉!" − 𝛪!" − 𝑪𝐚𝐪  
dX! dt = 𝐵!" − 𝐷! − 𝑅!" − 𝐻!" + 𝐶!"  
dX! dt = 𝐵!" − 𝐷! − 𝑅!" + 𝐻!" − 𝐾!  
dX! dt = 𝐵!" − 𝐷! + 𝑅!" − 𝑉!" + 𝛪!"  

Specify a predator:  
  𝑚 → 1, 𝑓 → 1, 𝑗! → 0, 𝑗! → 0,𝐵!" → 0,𝑌! 𝑋! → 1,𝑌! 𝑋! → 1,𝐴! → 1  

Delete unused functions:  𝐵!!,𝐵!",𝐵!",𝐻!", 𝛪!",𝑉!",𝑅!",𝑅!",𝑅!",𝑅!",𝐷! ,𝐷! ,𝐷! ,𝐹!  

Synonymize. With a single consumer per ingested resource (i.e., Xi = Yc), dXe/dt = dYa/dt, 
dXi/dt = dYc/dt, leaving a system of four equations: 
𝐝𝐘𝒒 𝐝𝐭 = 𝐵!" − 𝐷! + 𝐾! − 𝐶!"  
𝐝𝐘𝒂 𝐝𝐭 = 𝐶!" − 𝐷! − 𝐻!"  
𝐝𝐘𝒄 𝐝𝐭 = −𝐷! + 𝐻!" − 𝐾!  
𝐝𝐗𝒔 𝐝𝐭 = 𝐵!" − 𝐷! − 𝐶!"  
 
Define functions. Contact is mass action between questing and susceptible states, birth, 
death and handling are linear, consumer births are expressed as a linear conversion, e, of 
prey to predator.  
𝐝𝐘𝒒 𝐝𝐭 = 𝑒𝛼𝑌! − 𝑑!𝑌! + 𝛼𝑌! − 𝛽𝑌!𝑋!  
𝐝𝐘𝒂 𝐝𝐭 = 𝛽𝑌!𝑋! − 𝑑!𝑌! − ℎ𝑌!  
𝐝𝐘𝒄 𝐝𝐭 = −𝑑!𝑌! + ℎ𝑌! − 𝛼𝑌!  
𝐝𝐗𝒔 𝐝𝐭 = 𝑏!𝑋! − 𝑑!𝑋! − 𝛽𝑌!𝑋!  
 
Subsume Ya and Yc using separation of time scales. 
 𝑌! →

!!!!!
!!!!

,      𝑌! →
!!!
!!!!

, and substitute into 𝑑𝑌!/dt: 

𝐝𝐘𝒒 𝐝𝐭 = !!!!!!!!
(!!!!)(!!!!)

− 𝑑!𝑌! +
!!!!!!!

(!!!!)(!!!!)
− 𝛽𝑌!𝑋!  

𝐝𝐗𝒔 𝐝𝐭 = 𝑏!𝑋! − 𝑑!𝑋! − 𝛽𝑌!𝑋!  
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Simplify by setting bs – ds as the composite parameter a and redefining “conversion”, as 
the composite parameter 𝜃 = (!!!)!!

(!!!!)(!!!!)
− 1. 

 
Track: Assume that attacking and consuming consumers as well as exposed and ingested 
resources are too rare to bother counting. This leaves the classic Lotka Volterra (1925) 
prey–predator equations predator-prey model for questing predators.  
𝐝𝐘𝒒 𝐝𝐭 = 𝜃𝛽𝑌!𝑋! − 𝑑!𝑌!  
𝐝𝐗𝒔 𝐝𝐭 = 𝑎𝑋! − 𝛽𝑌!𝑋!  
 
This solution will reduce to the logistic equation if the prey resource is limited by density 
dependence. Here, we start with the solution for the Lotka-Volterra predator-prey model 
(above), but we make ds non linear by adding a density dependent term µ.  
𝐝𝐘𝒒 𝐝𝐭 = 𝜃𝛽𝑌!𝑋! − 𝑑!𝑌!  
𝐝𝐗𝒔 𝐝𝐭 = 𝑏!𝑋! − (𝑑!+𝜇𝑋!)𝑋! − 𝛽𝑌!𝑋!   

Subsume Xs using separation of time scales.  
𝑋! →

!!!!!
!

, and substitute into d𝑌!/dt: 

𝐝𝐘𝒒 𝐝𝐭 =
𝜃𝛽𝑌!(𝑎 − 𝛽𝑌!)

𝜇 − 𝑑!𝑌! 

 
Simplify by setting !"#!!!!

!
 as the composite parameter ϕ and !"#!!!!

!!!
 as the composite 

carrying capacity 𝑌!. 
 
Track: Again, assume that attacking and consuming consumers as well as exposed and 
ingested resources are too rare to bother counting. This leaves the logistic equation for a 
consumer feeding on a logistic resource.  

𝐝𝐘𝒒 𝐝𝐭 = 𝜑𝑌!(1−
𝑌!
𝑌!
) 
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2) Saturated predators (Spruce Budworm) (14)  
The Spruce budworm is a predator-prey model with a) a Holling type III functional 
response, b) logistic dynamics of the resource and c) a constant number of "predatory" 
birds. This version tracks only the consuming state of the predator, Yc. 
 
The general model 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝐪𝐜 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝑲𝐢 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝐚𝐪  
𝐝𝐘𝒂 𝐝𝐭 = 𝑪𝐚𝐪 −𝑫𝒂 −𝑯𝐜𝐚 − 𝑗!𝐷! 𝑌! 𝑋! − 𝐹!  
𝐝𝐘𝒄 𝐝𝐭 = 𝐵!! −𝑫𝒄 +𝑯𝐜𝐚 − 𝑗!𝐷! 𝑌! 𝑋! − 𝐴!𝑲𝐢 𝑌! 𝑋! −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝑩𝐬𝐱 −𝑫𝒔 + 𝑅!" + 𝑉!" − 𝛪!" − 𝑪𝐚𝐪  
dX! dt = 𝐵!" − 𝐷! − 𝑅!" − 𝐻!" + 𝐶!"  
dX! dt = 𝐵!" − 𝐷! − 𝑅!" + 𝐻!" − 𝐾!  
dX! dt = 𝐵!" − 𝐷! + 𝑅!" − 𝑉!" + 𝛪!"  

Specify a predator:  
  𝑚 → 1, 𝑓 → 1, 𝑗! → 0, 𝑗! → 0,𝐵!" → 0,𝑌! 𝑋! → 1,𝑌! 𝑋! → 1,𝐴! → 1  

Delete unused functions:  𝐵!!,𝐵!",𝐵!",𝐷! , 𝛪!",𝐻!",   𝐹! ,   𝑅!",𝑅!",𝑅!",𝑅!",𝑉!"  

Synonymize. With a single consumer per ingested resource (i.e., Xi = Yc), dXe/dt = dYa/dt, 
dXi/dt = dYc/dt, leaving a system of four equations: 
𝐝𝐘𝒒 𝐝𝐭 = 𝐵!" − 𝐷! + 𝐾! −𝐶!" 
𝐝𝐘𝒂 𝐝𝐭 = 𝐶!" − 𝐷! − 𝐻!"  
𝐝𝐘𝒄 𝐝𝐭 = −𝐷! + 𝐻!" − 𝐾!  
𝐝𝐗𝒔 𝐝𝐭 = 𝐵!" − 𝐷! − 𝐶!"  
 
Define functions. Contact is attractive (birds switch to susceptible insects when insects 
are abundant), birth, and handling are linear, consumer births are expressed as a linear 
conversion, e, of prey to predator, and the resource has density-dependent growth.  
𝐝𝐘𝒒 𝐝𝐭 = 𝑒𝛼𝑌! − 𝑑!𝑌! + 𝛼𝑌! − 𝛽𝑌!𝑋!!  
𝐝𝐘𝒂 𝐝𝐭 = 𝛽𝑌!𝑋!! − 𝑑!𝑌! − ℎ𝑌!  
𝐝𝐘𝒄 𝐝𝐭 = −𝑑!𝑌! + ℎ𝑌! − 𝛼𝑌!  
𝐝𝐗𝒔 𝐝𝐭 = 𝑏!𝑋! − 𝑋!(𝑑! + 𝜇𝑋!)− 𝛽𝑌!𝑋!!  
 
Subsume Yq and Ya using separation of time scales: 
𝑌! →

!(!!!)!!
!!!!!!!

,𝑌! →
!!!!!!

!!!!
    and substitute into d𝑌!/dt  and  d𝑋!/dt: 

𝐝𝐘𝒄 𝐝𝐭 = −𝑑!𝑌! +
!"(!!!)!!!!!!

(!!!!)(!!!!!!!)
− 𝛼𝑌!  

𝐝𝐗𝒔 𝐝𝐭 = 𝑏!𝑋! − 𝑋!(𝑑! + 𝜇𝑋!)−
!"(!!!)!!!!!

!!!!!!!
  

 
Simplify by assuming the predator population, and particularly, Yc is a constant, set the 
composite resource growth parameter a = bs – ds, defining the composite resource 
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carrying capacity parameter as 𝑋 = a/µ, and set the composite prey “conversion” 
parameter 𝜙 = 𝛼(𝑒 + 1). 
 
Track: Tracking only the susceptible component of the budworm population leaves:  
𝐝𝐗𝒔 𝐝𝐭 = 𝑎𝑋!(1−

!!
!
)− !!!!!!

!!!!!
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3) The Invulnerable prey-predator model (15)  
This is a Lotka–Volterra predator-prey model where prey can take refuge, here 

represented by the resistant prey state. All three versions of Abrams and Walters’s (1996) 
models can be replicated by the general model; here we have considered the second one, 
where only invulnerable prey are reproductive and density dependence is a function of a 
weighted sum of the two prey categories. The model also includes a Type II functional 
response for the predator, which emerges naturally during model simplification. This 
version only tracks the consuming consumers Yc. 
The general model 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝐪𝐜 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝑲𝐢 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝐚𝐪  
𝐝𝐘𝒂 𝐝𝐭 = 𝑪𝐚𝐪 −𝑫𝒂 −𝑯𝐜𝐚 − 𝑗!𝐷! 𝑌! 𝑋! − 𝐹!  
𝐝𝐘𝒄 𝐝𝐭 = 𝐵!! −𝑫𝒄 +𝑯𝐜𝐚 − 𝑗!𝐷! 𝑌! 𝑋! − 𝐴!𝑲𝐢 𝑌! 𝑋! −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝐵!" −𝑫𝒔 + 𝑅!" + 𝑽𝐬𝐫 − 𝜤𝐫𝐬 − 𝑪𝐚𝐪  
dX! dt = 𝐵!" − 𝐷! − 𝑅!" − 𝐻!" + 𝐶!"  
dX! dt = 𝐵!" − 𝐷! − 𝑅!" + 𝐻!" − 𝐾!  
𝐝𝐗𝒓 𝐝𝐭 = 𝑩𝐫𝐱 −𝑫𝒓 + 𝑅!" − 𝑽𝐬𝐫 + 𝜤𝐫𝐬  

Specify a predator:  
  𝑚 → 1, 𝑓 → 1, 𝑗! → 0, 𝑗! → 0,𝐵!" → 0,𝑌! 𝑋! → 1,𝑌! 𝑋! → 1,𝐴! → 1  

Delete unused functions: 𝐵!!,𝐵!",𝐵!",𝐹! ,𝐻!",𝑅!",𝑅!",𝑅!",𝑅!"  

Synonymize. With a single consumer per ingested resource (i.e., Xi = Yc), dXe/dt = dYa/dt, 
dXi/dt = dYc/dt, leaving a system of five equations: 
𝐝𝐘𝒒 𝐝𝐭 = 𝐵!" − 𝐷! + 𝐾! − 𝐶!"  
𝐝𝐘𝒂 𝐝𝐭 = 𝐶!" − 𝐷! − 𝐻!"  
𝐝𝐘𝒄 𝐝𝐭 = −𝐷! + 𝐻!" − 𝐾!  
𝐝𝐗𝒔 𝐝𝐭 = −𝐷! + 𝑉!" − 𝛪!" − 𝐶!"  
𝐝𝐗𝒓 𝐝𝐭 = 𝐵!" − 𝐷! − 𝑉!" + 𝛪!"  
 
Define functions. Contact is mass action between questing and susceptible states, birth, 
death and handling are linear, consumer births are expressed as a linear conversion, e, of 
prey to predator, and the death of resistant resources is density dependent and 
proportional to birth rate so that 𝐷! → 𝑏!𝑋!(𝜇!𝑋! + 𝜇!𝑋!).  
𝐝𝐘𝒒 𝐝𝐭 = 𝑒𝛼𝑌! − 𝑑!𝑌! + 𝛼𝑌! − 𝛽𝑌!𝑋!  
𝐝𝐘𝒂 𝐝𝐭 = 𝛽𝑌!𝑋! − 𝑑!𝑌! − ℎ𝑌!  
𝐝𝐘𝒄 𝐝𝐭 = −𝑑!𝑌! + ℎ𝑌! − 𝛼𝑌!  
𝐝𝐗𝒔 𝐝𝐭 = −𝑑!𝑋! + 𝑣𝑋! − 𝜄𝑋! − 𝛽𝑌!𝑋!  
𝐝𝐗𝒓 𝐝𝐭 = 𝑏!𝑋! − 𝑏!𝑋! 𝜇!𝑋! + 𝜇!𝑋! − 𝑣𝑋! + 𝜄𝑋!  
 
Subsume Ya and Yq using separation of time scales.  
𝑌! →

!!!!!
!!!!

        𝑌! →
!(!!!)!!
!!!!!!

 and substitute into d𝑌!/dt  , d𝑋!/dt    assuming  𝑑! = 𝑑!: 

𝐝𝐘𝒄 𝐝𝐭 = −𝑑!𝑌! +
!"(!!!)!!!!!
(!!!!)(!!!!!!)

− 𝛼𝑌!  



 
 

29 
 

𝐝𝐗𝒔 𝐝𝐭 = −𝑑!𝑋! + 𝑣𝑋! − 𝜄𝑋! −
!"(!!!)!!!!
!!!!!!

 

𝐝𝐗𝒓 𝐝𝐭 = 𝑏!𝑋! − 𝑏!𝑋! 𝜇!𝑋! + 𝜇!𝑋! − 𝑣𝑋! + 𝜄𝑋!  
 
Simplify by assuming h>>𝑑! ,  setting composite parameters 𝜙 = 𝛼 𝑒 + 1 ,𝛺 =
𝑑! + 𝛼 , and  half  saturation  constant  𝑘 = 𝑑!/𝛽. 

 
Track: Assume that attacking and questing consumers are too rare to bother counting. 
This leaves the of Abrams and Walters’s predator model with prey born into a resistant 
state and density-dependent deaths.  

𝐝𝐘𝒄 𝐝𝐭 = −𝛺𝑌! +
𝜙𝑌!𝑋!
𝑋! + 𝑘

 

𝐝𝐗𝒔 𝐝𝐭 = −𝑑!𝑋! + 𝑣𝑋! − 𝜄𝑋! −
!!!!!
!!!!

  
𝐝𝐗𝒓 𝐝𝐭 = 𝑏!𝑋! − 𝑏!𝑋! 𝜇!𝑋! + 𝜇!𝑋! − 𝑣𝑋! + 𝜄𝑋!  
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4) Chemostat (16):  
The Monod model is similar to a Lotka–Volterra model for a microbe growing in a 
chemostat apparatus. Nutrients are fluxed through a tank with bacteria that deplete the 
resource before the medium fluxes out of the tank along with unlucky microbes. There 
are several ways to reduce this model provided the questing state is subsumed. 
 
The general model 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝐪𝐜 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝑲𝐢 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝐚𝐪  
𝐝𝐘𝒂 𝐝𝐭 = 𝑪𝐚𝐪 −𝑫𝒂 −𝑯𝐜𝐚 − 𝑗!(𝐷! + 𝑅!")𝑌! 𝑋! − 𝐹!  
𝐝𝐘𝒄 𝐝𝐭 = 𝐵!! −𝑫𝒄 +𝑯𝐜𝐚 − 𝑗!(𝐷! +𝑅!")𝑌! 𝑋! − 𝐴!𝑲𝐢 𝑌! 𝑋! −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝑩𝐬𝐱 −𝑫𝒔 + 𝑅!" + 𝑉!" − 𝛪!" − 𝑪𝐚𝐪  
dX! dt = 𝐵!" − 𝐷! − 𝑅!" − 𝐻!" + 𝐶!"  
dX! dt = 𝐵!" − 𝐷! − 𝑅!" + 𝐻!" − 𝐾!  
dX! dt = 𝐵!" − 𝐷! + 𝑅!" − 𝑉!" + 𝛪!"  

Specify a predator on a resource without births:  
𝑚 → 1, 𝑓 → 1, 𝑗! → 0, 𝑗! → 0,𝐵!" → 0,𝑌! 𝑋! → 1,𝑌! 𝑋! → 1,𝐴! → 1  

Delete unused functions:  𝐵!!,𝐵!",𝐵!",𝐵!",𝐷! ,𝐹! ,𝐻!" , 𝛪!",𝑅!",𝑅!",𝑅!",𝑅!",𝑉!"  

Synonymize. Define resources in consumer units so there is a single consumer per 
ingested resource (i.e., Xi = Yc), dXe/dt = dYa/dt, dXi/dt = dYc/dt, leaving a system of four 
equations: 
𝐝𝐘𝒒 𝐝𝐭 = 𝐵!" − 𝐷! + 𝐾! − 𝐶!"  
𝐝𝐘𝒂 𝐝𝐭 = 𝐶!" − 𝐷! − 𝐻!"  
𝐝𝐘𝒄 𝐝𝐭 = −𝐷! + 𝐻!" −𝐾! 
𝐝𝐗𝒔 𝐝𝐭 = 𝐵!" − 𝐷! − 𝐶!"  
 
Define functions. Contact is mass action between questing and susceptible states. Death 
and handling are linear. Resources flux into the system at rate ρ, entering at a 
concentration X0. Depleted resources, Xs, and consumers flux out of the system at rate ρ. 
𝐝𝐘𝒒 𝐝𝐭 = 𝑒𝛼𝑌! − (𝑑!+𝜌)𝑌! + 𝛼𝑌! − 𝛽𝑌!𝑋!  
𝐝𝐘𝒂 𝐝𝐭 = 𝛽𝑌!𝑋! − (𝑑!+𝜌)𝑌! − ℎ𝑌! 
𝐝𝐘𝒄 𝐝𝐭 =− (𝑑!+𝜌)𝑌! + ℎ𝑌! − 𝛼𝑌! 
𝐝𝐗𝒔 𝐝𝐭 = 𝜌𝑋!   − 𝜌𝑋! − 𝛽𝑌!𝑋!  
 
Subsume Yq and Ya using separation of time scales: 
𝑌! →

!(!!!)!!
(!!!!!!!!)

,𝑌! →
!!!

(!!!!!!)
!(!!!)!!

(!!!!!!!!)
  

𝐝𝐘𝒄 𝐝𝐭 = −(𝑑! + 𝜌)𝑌! +
𝛼𝛽(𝑒 + 1)ℎ𝑌!𝑋!

(𝑑! + ℎ + 𝜌)(𝑑! + 𝜌 + 𝛽𝑋!)
− 𝛼𝑌! 

𝐝𝐗𝒔 𝐝𝐭 = 𝜌 𝑋! − 𝑋! − !"(!!!)!!!!
!!!!!!!!

  

 
Simplify by assuming h>>(da+ρ),  then defining the composite parameters φ = α (e+1), 
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ψ = (𝑑! + 𝜌  + α),  and half-saturation constant for contacts as k =  (𝑑! + 𝜌)/β. 

 
Track just the consuming part of the population: 
𝐝𝐘𝒄 𝐝𝐭 = −𝜓𝑌! +

!!!!!
!!!!

  

𝐝𝐗𝒔 𝐝𝐭 = 𝜌 𝑋! − 𝑋! − !!!!!
!!!!
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5) SI, with simplification to the logistic (17)  
This is a model for a non–lethal disease, where the resource population size is assumed to 
be constant in time, but the model explicitly accounts for host mortality and thus births 
are set so as to balance natural mortality. Diseased individuals may recover and become 
immune, but these are not tracked. As the total host population, X, is constant, the number 
of individual in the resistant class was computed by Hethcote (1976) as Xr = X – Xs – Xe – 
Xi.  
 
The general model 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝐪𝐜 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝐾! 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝐚𝐪  
dY! dt = 𝐶!" − 𝐷! − 𝐻!" − 𝑗!𝐷! 𝑌! 𝑋! − 𝐹!  
dY! dt = 𝐵!! − 𝐷! + 𝐻!" − 𝑗!𝐷! 𝑌! 𝑋! − 𝐴!𝐾! 𝑌! 𝑋! −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝑩𝐬𝐱 −𝑫𝒔 + 𝑅!" + 𝑉!" − 𝛪!" − 𝑪𝐚𝐪  
𝐝𝐗𝒆 𝐝𝐭 = 𝐵!" −𝑫𝒆 − 𝑅!" −𝑯𝐜𝐚 + 𝑪𝐚𝐪  
𝐝𝐗𝒊 𝐝𝐭 = 𝐵!" −𝑫𝒊 − 𝑹𝐱𝐢 +𝑯𝐜𝐚 − 𝐾!  
𝐝𝐗𝒓 𝐝𝐭 = 𝐵!" −𝑫𝒓 + 𝑹𝐫𝐱 − 𝑉!" + 𝛪!"  

Specify a pathogen: 
  𝑚 → 0, 𝑓 → 0, 𝑗! → 1, 𝑗! → 1,𝐵!" → 𝐵!",𝑌! 𝑋! → 1,𝑌! 𝑋! → 1,𝐴! → 1  

Delete unused functions:  𝐵!!,𝐵!",𝐵!",𝐵!",𝐹! ,𝐻!", 𝛪!",𝐾!,𝑅!",𝑅!",𝑉!"  

Synonymize. With a single consumer per ingested resource (i.e., Xi = Yc), dXe/dt = dYa/dt, 
dXi/dt = dYc/dt, leaving a system of five equations: 
𝐝𝐘𝒒 𝐝𝐭 = 𝐵!" − 𝐷! − 𝐶!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝐵!" − 𝐷! − 𝐶!" 
𝐝𝐗𝒆 𝐝𝐭 = −𝐷! − 𝐻!" +  𝐶!" 
𝐝𝐗𝒊 𝐝𝐭 = −𝐷! − 𝑅!" + 𝐻!" 
𝐝𝐗𝒓 𝐝𝐭 = −𝐷! + 𝑅!"  

Define functions. As for other pathogen models, questing stages are indiscriminant and 
die if they contact non-susceptible hosts, or Dq = Yq (dq + β(Xe + Xi + Xr)). Recovery and 
handling are linear, all resource states have the same death rate dx. Birth rate into the 
susceptible class is dxX. 
𝐝𝐘𝒒 𝐝𝐭 = 𝑏!𝑋! − 𝑑!𝑌! − 𝛽𝑌!𝑋   
𝐝𝐗𝒔 𝐝𝐭 = 𝑑!𝑋 − 𝑑!𝑋! − 𝛽𝑌!𝑋!  
𝐝𝐗𝒆 𝐝𝐭 = −𝑑!𝑋! − ℎ𝑋! + 𝛽𝑌!𝑋!  
𝐝𝐗𝒊 𝐝𝐭 = −𝑑!𝑋! − 𝑟𝑋! + ℎ𝑋! 
𝐝𝐗𝒓 𝐝𝐭 = −𝑑!𝑋! + 𝑟𝑋!  

Subsume Yq and Xe using separation of time scales: 
𝑌! →

!!!!
!!!!"

,   𝑋! →
!!!!!
!!!!

 and substitute into dXs/dt and dXi/dt: 

𝐝𝐗𝒔 𝐝𝐭 = 𝑑!𝑋 − 𝑑!𝑋! −
!!!!!!!
!!!!"
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𝐝𝐗𝒊 𝐝𝐭 = −𝑑!𝑋! − 𝑟𝑋! +
ℎ𝛽𝑌!𝑋!

(𝑑! + ℎ)((𝑑! + 𝛽𝑋)
 

𝐝𝐗𝒓 𝐝𝐭 = −𝑑!𝑋! + 𝑟𝑋!  

Simplify by assuming  bc = 1, h >> dx and dq >> βX,  then defining the composite 
parameter c = β/dq. 

Track: Ignoring the exposed and resistant component of the host population leaves: 
𝐝𝐗𝒔 𝐝𝐭 = 𝑑! − 𝑑!𝑋! − 𝑐𝑋!𝑋!  
𝐝𝐗𝒊 𝐝𝐭 = −𝑑!𝑋! − 𝑟𝑋! + 𝑐𝑋!𝑋! 
 
An additional reduction to the logistic is possible by simplifying more and tracking only 
Xi. Renaming X as K, and defining Xs = K – Xi, and setting dx and r = 0, leads to the 
familiar logistic equation, which indicates how a consumer of a fixed resource saturates 
to a carrying capacity. 

𝐝𝐗𝒊 𝐝𝐭 = 𝑐𝑋!(1−
𝑋!
𝐾) 

  



 
 

34 
 

6) SIR (18)  
This is the Kermack-McKendrick model for a non–lethal disease with fast dynamics over 
a short time scale, and no “background” mortality for the susceptible population. The 
total host population size is assumed to be constant. The model is: 
 
The general model 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝐪𝐜 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝐾! 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝐚𝐪  
dY! dt = 𝐶!" − 𝐷! − 𝐻!" − 𝑗!𝐷! 𝑌! 𝑋! − 𝐹!  
dY! dt = 𝐵!! − 𝐷! + 𝐻!" − 𝑗!𝐷! 𝑌! 𝑋! − 𝐴!𝐾! 𝑌! 𝑋! −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝐵!" − 𝐷! + 𝑅!" + 𝑉!" − 𝛪!" − 𝑪𝐚𝐪  
𝐝𝐗𝒆 𝐝𝐭 = 𝐵!" − 𝐷! − 𝑅!" −𝑯𝐜𝐚 + 𝑪𝐚𝐪  
𝐝𝐗𝒊 𝐝𝐭 = 𝐵!" − 𝐷! − 𝑹𝐱𝐢 +𝑯𝐜𝐚 − 𝐾!  
𝐝𝐗𝒓 𝐝𝐭 = 𝐵!" − 𝐷! + 𝑹𝐫𝐱 − 𝑉!" + 𝛪!"  

Specify a pathogen: 
𝑚 → 0, 𝑓 → 0, 𝑗! → 1, 𝑗! → 1,𝐵!" → 𝐵!",𝑌! 𝑋! → 1,𝑌! 𝑋! → 1,𝐴! → 1  

Delete unused functions: 
𝐵!",𝐵!!,𝐵!",𝐵!",𝐵!",𝐷!,𝐷! ,𝐷! ,𝐷! ,𝐷! ,𝐷! ,𝐹! ,𝐻!", 𝛪!",𝐾!,𝑅!",𝑅!",𝑉!" 
 
Synonymize. With a single consumer per ingested resource (i.e., Xi = Yc), dXe/dt = dYa/dt, 
dXi/dt = dYc/dt, leaving a system of five equations: 
𝐝𝐘𝒒 𝐝𝐭 = 𝐵!" − 𝐷! −𝐶!" 
𝐝𝐗𝒔 𝐝𝐭 = −𝐶!"  
𝐝𝐗𝒆 𝐝𝐭 = −𝐻!" + 𝐶!"  
𝐝𝐗𝒊 𝐝𝐭 = −𝑅!" + 𝐻!"  
𝐝𝐗𝒓 𝐝𝐭 = 𝑅!"  

Define functions. Contact is mass action, recovery and handling are linear, births ignored.  
𝐝𝐘𝒒 𝐝𝐭 = 𝑏!𝑋! − 𝑑!𝑌! − 𝛽𝑌!𝑋  
𝐝𝐗𝒔 𝐝𝐭 = −𝛽𝑌!𝑋!   
𝐝𝐗𝒆 𝐝𝐭 = −ℎ𝑋! +  𝛽𝑌!𝑋! 
𝐝𝐗𝒊 𝐝𝐭 = −  𝑟𝑋! + ℎ𝑋!  
𝐝𝐗𝒓 𝐝𝐭 = 𝑟𝑋!  

Subsume Yq and Xe using separation of time scales: 
𝑌! →

!!!!
!!!!"

,𝑋! →
!!!!!
!
,  and substitute into dXi/dt and dXs/dt: 

𝐝𝐗𝒔 𝐝𝐭 = − !!!!!!!
!!!!"

  

𝐝𝐗𝒊 𝐝𝐭 = −𝑟𝑋! +
𝛽𝑏!𝑋!𝑋!
𝑑! + 𝛽𝑋

 

𝐝𝐗𝒓 𝐝𝐭 = 𝑟𝑋!  

Simplify by assuming dq >> βX,  then defining the composite parameter c = βbc/dq. 
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Track: Ignoring the exposed component of the host population leaves the model 
formulated in the original Kermack and McKendrick form, namely: 
𝐝𝐗𝒔 𝐝𝐭 = −c𝑋!𝑋!  
𝐝𝐗𝒊 𝐝𝐭 = −  𝑟𝑋! + c𝑋!𝑋!  
𝐝𝐗𝒓 𝐝𝐭 = 𝑟𝑋!  
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7) SEIR with further reduction for measles (2) 
This model describes the dynamics of a lethal disease. It assumes that births balance 
deaths in the disease–free population, but population size is not constant because of 
disease–induced mortality. Transmission is assumed to be frequency dependent. 
 
The general model 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝐪𝐜 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝐾! 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝐚𝐪  
dY! dt = 𝐶!" − 𝐷! − 𝐻!" − 𝑗!𝐷! 𝑌! 𝑋! − 𝐹!  
dY! dt = 𝐵!! − 𝐷! + 𝐻!" − 𝑗!𝐷! 𝑌! 𝑋! − 𝐴!𝐾! 𝑌! 𝑋! −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝑩𝐬𝐱 −𝑫𝒔 + 𝑅!" + 𝑽𝐬𝐫 − 𝛪!" − 𝑪𝐚𝐪  
𝐝𝐗𝒆 𝐝𝐭 = 𝐵!" −𝑫𝒆 − 𝑅!" −𝑯𝐜𝐚 + 𝑪𝐚𝐪  
𝐝𝐗𝒊 𝐝𝐭 = 𝐵!" −𝑫𝒊 − 𝑹𝐱𝐢 +𝑯𝐜𝐚 −𝑲𝐢  
𝐝𝐗𝒓 𝐝𝐭 = 𝐵!" −𝑫𝒓 + 𝑹𝐫𝐱 − 𝑽𝐬𝐫 + 𝛪!"  

Specify a pathogen: 
𝑚 → 0, 𝑓 → 0, 𝑗! → 1, 𝑗! → 1,𝐵!" → 𝐵!",𝑌! 𝑋! → 1,𝑌! 𝑋! → 1,𝐴! → 1  

Delete unused functions:  𝐵!!,𝐵!",𝐵!",𝐵!",𝐹! ,𝐻!", 𝛪!",𝑅!"  

Synonymize. With a single consumer per ingested resource (i.e., Xi = Yc), dXe/dt = dYa/dt, 
dXi/dt = dYc/dt, leaving a system of five equations: 
𝐝𝐘𝒒 𝐝𝐭 = 𝐵!" − 𝐷! − 𝐶!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝐵!" − 𝐷! + 𝑉!" − 𝐶!"  
𝐝𝐗𝒆 𝐝𝐭 = −𝐷! − 𝐻!" + 𝐶!" 
𝐝𝐗𝒊 𝐝𝐭 = −𝐷! − 𝑅!" + 𝐻!" − 𝐾! 
𝐝𝐗𝒓 𝐝𝐭 = −𝐷! + 𝑅!" − 𝑉!"  

Define functions. Contact, recovery and handling are linear, and all resource states have 
the same death rate, dx. 
𝐝𝐘𝒒 𝐝𝐭 = 𝑏!𝑋! − 𝑑!𝑌! − 𝛽𝑌!𝑋  
𝐝𝐗𝒔 𝐝𝐭 = 𝑑!𝑋 − 𝑑!𝑋! + 𝑣𝑋! − 𝛽𝑌!𝑋! 
𝐝𝐗𝒆 𝐝𝐭 = −𝑑!𝑋! − ℎ𝑋! + 𝛽𝑌!𝑋!  
𝐝𝐗𝒊 𝐝𝐭 = −𝑑!𝑋! − 𝑟𝑋! + ℎ𝑋! − 𝛼𝑋! 
𝐝𝐗𝒓 𝐝𝐭 = −𝑑!𝑋! + 𝑟𝑋! − 𝑣𝑋!  

Subsume Yq and Xe using separation of time scales: 
𝑌! →

!!!!
!!!!"

, 𝑋! →
!!!!!
!!!!

,  and substitute into dXs/dt and dXi/dt: 

𝐝𝐗𝒔 𝐝𝐭 = 𝑑!𝑋 − 𝑑!𝑋! + 𝑣𝑋! −
!!!!!!!
!!!!"

  

𝐝𝐗𝒊 𝐝𝐭 = −𝑑!𝑋! − 𝑟𝑋! +
ℎ𝛽𝑌!𝑋!

(𝑑! + ℎ)((𝑑! + 𝛽𝑋)
− 𝛼𝑋! 

𝐝𝐗𝒓 𝐝𝐭 = −𝑑!𝑋! + 𝑟𝑋! − 𝑣𝑋!  

Simplify by assuming h >> dx, dq << βX  
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Track: Ignoring the exposed component of the host population leaves: 
𝐝𝐗𝒔 𝐝𝐭 = 𝑑!𝑋 − 𝑑!𝑋! + 𝑣𝑋! −

!!!!!!
!

  

𝐝𝐗𝒊 𝐝𝐭 = −𝑑!𝑋! − 𝑟𝑋! +
𝑏!𝑋!𝑋!
𝑋 − 𝛼𝑋! 

𝐝𝐗𝒓 𝐝𝐭 = −𝑑!𝑋! + 𝑟𝑋! − 𝑣𝑋!  

To model measles, Anderson and May use a slightly different version of the SEIR model 
above to emphasize the time course of the infection and the tendency to permanent 
immunity. 
 
Subsume Yq using separation of time scales: 
𝑌! →

!!!!
!!!!"

 , and substitute into dXe/dt: 

𝐝𝐗𝒆 𝐝𝐭 = −𝑑!𝑋! − ℎ𝑋! +
!!!!!!!
!!!!"

  

𝐝𝐗𝒊 𝐝𝐭 = −𝑑!𝑋! − 𝑟𝑋! + ℎ𝑋! − 𝛼𝑋! 
𝐝𝐗𝒓 𝐝𝐭 = −𝑑!𝑋! + 𝑟𝑋! − 𝑣𝑋!   

Simplify by making immunity permanent (v = 0), additional mortality in the infected state 
negligible (α = 0), assuming dq >> βX,  then defining the composite parameter c = βbc/dq. 

Track: Ignoring the susceptible component of the host population leaves: 
𝐝𝐗𝒆 𝐝𝐭 = −𝑑!𝑋! − ℎ𝑋! + 𝑐𝑋!𝑋! 
𝐝𝐗𝒊 𝐝𝐭 = −𝑑!𝑋! − 𝑟𝑋! + ℎ𝑋! 
𝐝𝐗𝒓 𝐝𝐭 = −𝑑!𝑋! + 𝑟𝑋!   
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8) SEI for rabies in wildlife (19)  
This is a model for a lethal disease for a wildlife host with logistic dynamics. It tracks 
susceptible, exposed and infected individuals; transmission is assumed to be density 
dependent and there is no resistant class. The wildlife population is regulated by density 
dependence. 
 
The general model 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝐪𝐜 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝐾! 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝐚𝐪  
dY! dt = 𝐶!" − 𝐷! − 𝐻!" − 𝑗!𝐷! 𝑌! 𝑋! − 𝐹!  
dY! dt = 𝐵!! − 𝐷! + 𝐻!" − 𝑗!𝐷! 𝑌! 𝑋! − 𝐴!𝐾! 𝑌! 𝑋! −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝑩𝐬𝐱 −𝑫𝒔 + 𝑅!" + 𝑉!" − 𝛪!" − 𝑪𝐚𝐪  
𝐝𝐗𝒆 𝐝𝐭 = 𝐵!" −𝑫𝒆 − 𝑅!" −𝑯𝐜𝐚 + 𝑪𝐚𝐪  
𝐝𝐗𝒊 𝐝𝐭 = 𝐵!" −𝑫𝒊 − 𝑅!" +𝑯𝐜𝐚 −𝑲𝐢  
dX! dt = 𝐵!" − 𝐷! + 𝑅!" − 𝑉!" + 𝛪!"  

 
Specify a pathogen:  
𝑚 → 0, 𝑓 → 0, 𝑗! → 1, 𝑗! → 1,𝑌! 𝑋! → 1,𝑌! 𝑋! → 1,𝐴! → 1  

 
Delete unused functions:  𝐵!! ,𝐵!" ,𝐵!",𝐵!" ,𝐷! ,𝐹! ,𝐻!", 𝛪!",𝑅!" ,𝑅!" ,𝑅!" ,𝑅!" ,𝑉!" 
 
Synonymize. With a single consumer per ingested resource (i.e., Xi = Yc), dXe/dt = dYa/dt, 
dXi/dt = dYc/dt, leaving a system of four equations:  
𝐝𝐘𝒒 𝐝𝐭 = 𝐵!" − 𝐷! − 𝐶!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝐵!" − 𝐷! − 𝐶!"  
𝐝𝐗𝒆 𝐝𝐭 = −𝐷! − 𝐻!" + 𝐶!"  
𝐝𝐗𝒊 𝐝𝐭 = −𝐷! + 𝐻!" − 𝐾! 
 
Define functions. Contact is linear, resource has density-dependent growth, recovery and 
handling are linear, and all resource states have the same death rate, dx.  
𝐝𝐘𝒒 𝐝𝐭 = 𝑏!𝑋! − 𝑑!𝑌! − 𝛽𝑌!𝑋  
𝐝𝐗𝒔 𝐝𝐭 = 𝑏𝑋! − (𝑑! + 𝜇𝑋)𝑋! − 𝛽𝑌!𝑋!  
𝐝𝐗𝒆 𝐝𝐭 = −(𝑑! + 𝜇𝑋)𝑋! − ℎ𝑋! + 𝛽𝑌!𝑋!  
𝐝𝐗𝒊 𝐝𝐭 = −𝑑!𝑋! − 𝜇𝑋𝑋! + ℎ𝑋! − 𝛼𝑋! 
 
Subsume Yq using separation of time scales: 
𝑌! →

!!!!
!!!!!!

 and substitute into dXs/dt and dXe/dt: 

𝐝𝐗𝒔 𝐝𝐭 = 𝑏𝑋! − (𝑑! + 𝜇𝑋)𝑋! −
!!!!!!!
!!!!"

  

𝐝𝐗𝒆 𝐝𝐭 = −(𝑑! + 𝜇𝑋)𝑋! − ℎ𝑋! +
𝛽𝑏!𝑋!𝑋!
𝑑! + 𝛽𝑋

 

𝐝𝐗𝒊 𝐝𝐭 = −(𝑑! + 𝜇𝑋)𝑋! + ℎ𝑋! − 𝛼𝑋! 
 
Simplify by assuming dq >> βX,  then defining the composite parameter c = βbc/dq. 
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Track: Ignoring the questing state of the pathogen leaves: 
𝐝𝐗𝒔 𝐝𝐭 = 𝑏𝑋! − (𝑑! + 𝜇𝑋)𝑋! − 𝑐𝑋!𝑋!  
𝐝𝐗𝒆 𝐝𝐭 = −(𝑑! + 𝜇𝑋)𝑋! − ℎ𝑋! + 𝑐𝑋!𝑋! 
𝐝𝐗𝒊 𝐝𝐭 = −(𝑑! + 𝜇𝑋)𝑋! + ℎ𝑋! − 𝛼𝑋! 
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9) Q-SI insect/pathogen model with free-living infective stages (20)  
Here we provide the reduction of the general model to “Model G” described in section 11 
by Anderson and May. This model describes the dynamics of a lethal disease and its 
Malthusian host. It tracks the dynamics of susceptible and infected individuals assuming 
density–dependent transmission, the potential for recovery from the infected back to the 
susceptible class and free living infective consumers. Different from many other 
pathogen models is the ability of the infected class to reproduce. 
 
The general model 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝒒𝒄 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝐾! 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝒂𝒒  
dY! dt = 𝐶!" − 𝐷! − 𝐻!" − 𝑗!𝐷! 𝑌! 𝑋! − 𝐹!  
dY! dt = 𝐵!! − 𝐷! + 𝐻!" − 𝑗!𝐷! 𝑌! 𝑋! − 𝐴!𝐾! 𝑌! 𝑋! −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝑩𝒔𝒙 −𝑫𝒔 + 𝑹𝒔𝒙 + 𝑉!" − 𝛪!" − 𝑪𝒂𝒒  
𝐝𝐗𝒆 𝐝𝐭 = 𝐵!" −𝑫𝒆 − 𝑅!" −𝑯𝒄𝒂 + 𝑪𝒂𝒒  
𝐝𝐗𝒊 𝐝𝐭 = 𝐵!" −𝑫𝒊 − 𝑹𝒙𝒊 +𝑯𝒄𝒂 −𝑲𝒊  
dX! dt = 𝐵!" − 𝐷! + 𝑅!" − 𝑉!" + 𝛪!"  

 
Specify a pathogen: 
𝑚 → 0, 𝑓 → 0, 𝑗! → 1, 𝑗! → 1,𝑌! 𝑋! → 1,𝑌! 𝑋! → 1,𝐴! → 1  

 
Delete unused functions:  𝐵!! ,𝐵!" ,𝐵!",𝐵!" ,𝐷! ,𝐹! ,𝐻!" , 𝛪!",𝑅!" ,𝑅!" ,𝑉!" 
 
Synonymize. With a single consumer per ingested resource (i.e., Xi = Yc), dXe/dt = dYa/dt, 
dXi/dt = dYc/dt, leaving a system of four equations: 
𝒅𝒀𝒒 𝒅𝒕 = 𝐵!" − 𝐷! − 𝐶!"  
𝒅𝑿𝒔 𝒅𝒕 = 𝐵!" − 𝐷! + 𝑅!" − 𝐶!" 
𝒅𝑿𝒆 𝒅𝒕 = −𝐷! − 𝐻!" + 𝐶!"  
𝒅𝑿𝒊 𝒅𝒕 = −𝐷! − 𝑅!" + 𝐻!" − 𝐾! 
 
Define functions. Contact, recovery and handling are linear. Questing states are lost 
whenever they contact a host in any state, and all resource states have the same death 
rate, dx.  
𝒅𝒀𝒒 𝒅𝒕 = 𝑏!𝑋! − 𝑑!𝑌! − 𝛽𝑌!𝑋 
𝒅𝑿𝒔 𝒅𝒕 = 𝑏!𝑋 − 𝑑!𝑋! + 𝑟𝑋! − 𝛽𝑌!𝑋! 
𝒅𝑿𝒆 𝒅𝒕 = −𝑑!𝑋! − ℎ𝑋! + 𝛽𝑌!𝑋! 
𝒅𝑿𝒊 𝒅𝒕 = −𝑑!𝑋! − 𝑟𝑋! + ℎ𝑋! − 𝛼𝑋! 
 
Subsume Xe using separation of time scales: 
𝑋! →

!!!!!
!!!!

 and substitute into dXi/dt: 
𝒅𝒀𝒒 𝒅𝒕 = 𝑏!𝑋! − 𝑑!𝑌! − 𝛽𝑌!𝑋 

𝒅𝑿𝒔 𝒅𝒕 = 𝑏!𝑋 − 𝑑!𝑋! + 𝑟𝑋! −
𝛽ℎ𝑌!𝑋!
𝑑! + ℎ

 

𝒅𝑿𝒊 𝒅𝒕 = −𝑑!𝑋! − 𝑟𝑋! +
𝛽ℎ𝑌!𝑋!
𝑑! + ℎ

− 𝛼𝑋! 
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Simplify by assuming h >> dx  
 
Track: Ignoring the exposed component of the host population leaves the SIW model 

described by eqs (59)–(62) in Anderson and May 1981: 

𝐝𝐘𝒒 𝐝𝐭 = 𝑏!𝑋! − 𝑑!𝑌! − 𝛽𝑌!𝑋 
𝐝𝐗𝒔 𝐝𝐭 = 𝑏!𝑋 − 𝑑!𝑋! + 𝑟𝑋! − 𝛽𝑌!𝑋! 
𝐝𝐗𝒊 𝐝𝐭 = −𝑑!𝑋! − 𝑟𝑋! + 𝛽𝑌!𝑋! − 𝛼𝑋! 
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10) Macroparasite (21)  
The macroparasite model was a major development that recognized that host mortality 
increased with parasite intensity and the aggregated distribution of parasites in their hosts 
meant that the parasite population was not uniformly distributed in the host population. 
The family of macroparasite models tracks the host population (combined infected and 
uninfected) and the parasite population. The host population is often assumed not to be 
constant. In some versions, two states of the parasite population are tracked, consuming 
(worms) and questing (eggs). In others, the egg is assumed to equilibrate fast relative to 
other processes. 
 
The general model 
𝐝𝐘𝒒 𝐝𝐭 = 𝑩𝐪𝐜 −𝑫𝒒 +𝑚 1− 𝑓 𝐻!" + 𝑓𝑚𝐴!𝐾! 𝑌! 𝑋! +𝑚𝐹! − 𝑪𝐚𝐪  
𝐝𝐘𝒂 𝐝𝐭 = 𝑪𝐚𝐪 −𝑫𝒂 −𝑯𝐜𝐚 − 𝒋𝒂𝑫𝒆 𝒀𝒂 𝑿𝒆 − 𝐹!  
𝐝𝐘𝒄 𝐝𝐭 = 𝐵!! −𝑫𝒄 +𝑯𝐜𝐚 − 𝒋𝒄𝑫𝒊 𝒀𝒄 𝑿𝒊 − 𝑨𝒊𝑲𝐢 𝒀𝒄 𝑿𝒊 −𝑚 1− 𝑓 𝐻!"  
𝐝𝐗𝒔 𝐝𝐭 = 𝑩𝐬𝐱 −𝑫𝒔 + 𝑅!" + 𝑉!" − 𝛪!" − 𝑪𝐚𝐪  
𝐝𝐗𝒆 𝐝𝐭 = 𝐵!" −𝑫𝒆 − 𝑅!" −𝑯𝐜𝐚 + 𝑪𝐚𝐪  
𝐝𝐗𝒊 𝐝𝐭 = 𝐵!" −𝑫𝒊 − 𝑅!" +𝑯𝐜𝐚 −𝑲𝐢  
dX! dt = 𝐵!" − 𝐷! + 𝑅!" − 𝑉!" + 𝛪!"  

 
Specify a macroparasite (where κ represents aggregation): 
𝑚 → 0, 𝑓 → 0, 𝑗! → 1, 𝑗! → 1  

 
Delete unused functions:  𝐵!! ,𝐵!" ,𝐵!",𝐵!" ,𝐷! ,𝐹! ,𝐻!" , 𝛪!",𝑅!" ,𝑅!" ,𝑅!" ,𝑅!" ,𝑉!" 
 
Combine the resource (host) state variables by summing their right and left-hand sides: 
𝐝𝐘𝒒 𝐝𝐭 = 𝐵!" − 𝐷! − 𝐶!"  
𝐝𝐘𝒂 𝐝𝐭 = 𝐶!" − 𝐷! − 𝐻!" −

!!!!
!!

  

𝐝𝐘𝒄 𝐝𝐭 = −𝐷! + 𝐻!" −
!!!!
!!
− !!!!!!

!!
  

𝐝𝐗 𝐝𝐭 = 𝐵!" − 𝐷! − 𝐷! − 𝐷! − 𝐾!  
 
Define functions. Contact is mass action for all hosts, recovery and handling are linear, 
parasite distribution within the host population is a negative binomial with clumping 
parameter κ.  
𝐝𝐘𝒒 𝐝𝐭 = 𝑏!𝑌! − 𝑑!𝑌! − 𝛽𝑌!𝑋  
𝐝𝐘𝒂 𝐝𝐭 = 𝛽𝑋𝑌! − 𝑑!𝑌! − ℎ𝑌! − 𝑑!𝑌!  

𝐝𝐘𝒄 𝐝𝐭 = −𝑑!𝑌! + ℎ𝑌! −
!!!!!!
!!

− 𝛼𝑌!(1+
!
!!! !!
!

)  

𝐝𝐗 𝐝𝐭 = 𝑏!𝑋 − 𝑑!𝑋! − 𝑑!𝑋! − 𝑑!𝑋! − 𝛼𝑌!  
 
Subsume Ya using separation of time scales: 
𝑌! →

!"!!
!!!!!!!

, and substitute into dYc/dt: 
𝐝𝐘𝒒 𝐝𝐭 = 𝑏!𝑌! − 𝑑!𝑌! − 𝛽𝑋𝑌!  
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𝐝𝐘𝒄 𝐝𝐭 = −𝑑!𝑌! +
!!!!!

!!!!!!!
− 𝑑!𝑌! − 𝛼𝑌!(1+

!
!!! !!
!

)    

𝐝𝐗 𝐝𝐭 = 𝑏!𝑋 − 𝑑!𝑋! − 𝑑!𝑋! − 𝑑!𝑋! − 𝛼𝑌!  
 
Simplify by assuming h >>  (𝑑! + 𝑑!), and 𝑑! = 𝑑! =   𝑑! =   𝑑!  
 
Track: Ignoring the attacking component of the consumer population leaves: 

𝐝𝐘𝒒 𝐝𝐭 = 𝑏!𝑌! − 𝑑!𝑌! − 𝛽𝑋𝑌!  

𝐝𝐘𝒄 𝐝𝐭 = −𝑑!𝑌! + 𝛽𝑋𝑌! − 𝑑!𝑌! − 𝛼𝑌!(1+
1
𝜅 + 1 𝑌!

𝑋 )   

𝐝𝐗 𝐝𝐭 = (𝑏! − 𝑑!)𝑋 − 𝛼𝑌!  
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